Aspects, mechanism, and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxide synthase.
نویسندگان
چکیده
The goal of this study was to explore the occurrence of nitrated proteins in mitochondria given that these organelles are endowed with a mitochondrial nitric oxide (NO.-) synthase and considering the important role that mitochondria have in energy metabolism. Our hypothesis is that nitration of proteins constitutes a posttranslational modification by which NO.- exhibits long-term effects above and beyond those bioregulatory ones mediated through the interaction with cytochrome c oxidase. Our studies are aimed at understanding the mechanisms underlying the nitration of proteins in mitochondria and the biological significance of such a process in the cellular milieu. On promoting a sustained NO.- production by mitochondria, we investigated various aspects of protein nitration. Among them, the localization of nitrated proteins in mitochondrial subfractions, the identification of nitrated proteins through proteomic approaches, the characterization of affected pathways, and depiction of a target sequence. The biological relevance was analyzed by considering the turnover of native and nitrated proteins. In this regard, mitochondrial dysfunction, ensuing nitrative stress, may be envisioned as the result of accumulation of nitrated proteins, resulting from an overproduction of endogenous NO.- (this study), a failure in the proteolytic system to catabolize modified proteins, or a combination of both. Finally, this study allows one to gain understanding on the mechanism and nitrating species underlying mitochondrial protein nitration.
منابع مشابه
EB2003 SYMPOSIUM Mitochondrial Nitric Oxide Aspects, mechanism, and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxide synthase
Elfering, S. L., V. L. Haynes, N. J. Traaseth, A. Ettl, and Cecilia Giulivi. Aspects, mechanism, and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxide synthase. Am J Physiol Heart Circ Physiol 286: H22–H29, 2004; 10.1152/ajpheart.00766.2003.—The goal of this study was to explore the occurrence of nitrated proteins in mitochondria given that these or...
متن کاملTamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase.
Tamoxifen is an anticancer drug that induces oxidative stress and apoptosis via mitochondria-dependent and nitric oxide (NO)-dependent pathways. The present report shows that tamoxifen increases intramitochondrial ionized Ca(2+) concentration and stimulates mitochondrial NO synthase (mtNOS) activity in the mitochondria from rat liver and human breast cancer MCF-7 cells. By stimulating mtNOS, ta...
متن کاملApoptosis via Stimulating Mitochondrial Nitric Oxide Tamoxifen Induces Oxidative Stress and Mitochondrial
Tamoxifen is an anticancer drug that induces oxidative stress and apoptosis via mitochondria-dependent and nitric oxide (NO)–dependent pathways. The present report shows that tamoxifen increases intramitochondrial ionized Ca concentration and stimulates mitochondrial NO synthase (mtNOS) activity in the mitochondria from rat liver and human breast cancer MCF-7 cells. By stimulating mtNOS, tamoxi...
متن کاملCyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide.
AIMS Cyclosporine A (CsA) has represented a fundamental therapeutic weapon in immunosuppression for the past three decades. However, its clinical use is not devoid of side effects, among which hypertension and vascular injury represent a major drawback. Endothelial cells are able to generate reactive oxygen and nitrogen species upon exposure to CsA, including formation of peroxynitrite. This ma...
متن کاملCalcineurin regulates myocardial function during acute endotoxemia.
RATIONALE Cyclosporin A (CsA) is known to preserve cardiac contractile function during endotoxemia, but the mechanism is unclear. Increased nitric oxide (NO) production and altered mitochondrial function are implicated as mechanisms contributing to sepsis-induced cardiac dysfunction, and CsA has the capacity to reduce NO production and inhibit mitochondrial dysfunction relating to the mitochond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 286 1 شماره
صفحات -
تاریخ انتشار 2004